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1 Introduction
Draft Status This document is currently a working draft and subject to change. Certain sections are marked as
“work in progress” (WIP) and will be expanded soon.

Audience This document presents the formal syntax and semantics of PartiQL. It is oriented to PartiQL query
processor builders who need the full and formal detail on PartiQL.

SQL users who are not interested in the full detail and the complete formalism but are interested in learning
how PartiQL extends SQL may also read the tutorial. Unlike this formal specification, the tutorial has a “how to”
orientation and is primarily driven by examples.

PartiQL core and PartiQL syntactic sugar In the interest of precision and succinctness, we tier the PartiQL
specification in two layers: The PartiQL core is a functional programming language with composable aspects. Three
aspects of the PartiQL core syntax and semantics are characteristic of its functional orientation: Every (sub)query and
every (sub) expression input and output PartiQL data. Second, each clause of a SELECT query is itself a function.
Third, every (sub)query evaluates within the environment created by the database names and the variables of the
enclosing queries.

Then we layer “syntactic sugar” features over the core. Commonly, syntactic sugar achieves well-known SQL syntax
and semantics. Formally, every syntactic sugar feature is explained by reduction to the core.
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2 Data Model

1 value → absent_value
2 | scalar_value
3 | tuple_value
4 | collection_value
5 absent_value → NULL
6 | MISSING
7 scalar_value → ` ion_literal `
8 | sql_literal
9 tuple_value → { }
10 | { string_value : value (, string_value : value)* }
11 value cannot be MISSING
12 collection_value → array_value
13 | bag_value
14 array_value → [ (value (, value)*)? ]
15 bag_value → << (value (, value)*)? >>

Figure 1: BNF Grammar for PartiQL Values

Figure 1 shows the BNF grammar for PartiQL values. A PartiQL database generally contains one or more PartiQL
named values. A name, is an identifier, such as a table name, that is associated with a PartiQL value. Section 3
defines what these names are, and how SQL qualified names work, in detail.

The type of a value is absent, scalar, tuple or collection. Further subtyping applies to scalars, tuples, and collections.
We will often use the name complex value to refer to any non-scalar and non-absent value. That is, complex values
include tuples and collections. A tuple is a set of attribute name/value pairs, where each name is a string (as in SQL).
A tuple in the data model is unordered. A conventional SQL tuple is an ordered tuple since the schema dictates
the order of the attributes and certain SQL operations may use the order—support for this is described in detail in
Section 15.

PartiQL’s data model extends SQL to Ion’s type system to cover schema-less and nested data. Such values can be
directly quoted with `quotes.

Unlike SQL, PartiQL allows the possibility of duplicate attribute names, in the interest of compatibility with non-
strict JSON/Ion datasets. However PartiQL does not encourage duplicate attribute names; navigation into tuples
with the conventional dot notation (Section 4) is tuned to the assumption that the attribute names are unique.

A collection_value is either an ordered or unordered (BNF lines 12–13). Both arrays and bags may contain
duplicate elements. An array is ordered (similar to a JSON array or Ion list) and each element is accessible by its
ordinal position. (See specifics of access by position in Section 4.) Arrays are delimited with [ ]. For example, the
value of the attribute configurationItems in Figure 2 is an array. Arrays have size, which is not explicitly denoted
but is implied by the number of elements in the array. For example, the size of the configurationItems in Figure 2
is 2. The first element of an array corresponds to index 0; the last element corresponds to index size minus one.

In contrast, a bag is unordered (similar to a SQL table) and its elements cannot be accessed by ordinal position.
Bags are denoted with << and >>.

Finally, note that PartiQL has two kinds of absent values: NULL and MISSING. The motivation is as follows: Unlike
SQL, where a query that refers to a non-existent attribute name is expected to fail during compilation, in semi-
structured data one expects a query to operate even if some of the tuples do not define some of the attributes that the
query’s paths mention. Hence PartiQL contains the special value MISSING (BNF line 6), which is the path result in
cases where navigation fail to bind to any information. The distinction between MISSING and NULL enables retaining
the original distinction between a missing attribute and a null-valued attribute. The utility of MISSING (as opposed
to just having NULL) will become further apparent when navigation into semi-structured data and construction of
semi-structured results is discussed.

The value MISSING may not appear as an attribute value. Notice that in the interest of readability, the syntax
of Figure 1 does exclude these cases; rather the “value cannot be MISSING” restrictions (BNF line 11) indicate that
MISSING cannot appear as an attribute value.

Comparisons to the relational model In summary, the PartiQL data model extended the SQL data model in
the following ways:
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1. The elements of an array/bag can be any kind of value—not just tuples. Furthermore they can be heteroge-
neous. That is, there are no restrictions between the elements of an array/bag. For example, the two tuples in
configurationItems array of are heterogeneous because: (i) each tuple has a different set of attributes (for exam-
ple, the second tuple has configurationStateId while the first does not), (ii) an attribute of a first tuple may map
to some type while the same attribute in a second tuple may map to another type.

2. More broadly, unlike SQL where the values are tables that have homogeneous tuples that have scalars, PartiQL
complex values are arbitrary compositions of arrays, bags and tuples. E.g., the top level value of Figure 2 is a tuple
and the configurationItems array has two heterogeneous tuples. Note that in this example, the top-level name
refers to a value that is not a bag (e.g. a table).

3. There is a distinction between null-valued attributes and missing attributes.
4. PartiQL makes an explicit distinction between arrays and bags, where the former have order and their elements can

be addressed by ordinal position. 1

1Despite the “SQL table is a bag” and “the results of an SQL query is a table” statements of SQL textbooks, SQL also recognizes that
the result of a query that has an ORDER BY is a list, i.e., an ordered collection of tuples.
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{
'fileVersion':'1.0',
'configurationItems':[
{

'configurationItemCaptureTime': `2016-08-03T08:56:52.415Z`,
'resourceId':'h-0337bfe6793cf9e0c',
'configuration':{

'hostId':'h-0337bfe6793cf9e0c',
'hostProperties':{

'sockets':2,
'cores':20,
'totalVCpus':32,
'instanceType':'m4.medium'

},
'tags':{

'CostCenter':'Prod'
},

},
{

'configurationItemCaptureTime':`2016-08-03T09:41:56.906Z`,
'resourceId':'h-0337bfe6793cf9e0c',
'configurationStateId':3,
'configuration':{

'hostId':'h-0337bfe6793cf9e0c',
'autoPlacement':'off',
'hostProperties':{

'sockets':2,
'cores':20,
'totalVCpus':32,
'instanceType':'m3.medium'

},
'tags':{
},

}
]

}

Figure 2: An Example of a PartiQL Value
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3 Queries, Environments and Binding Tuples

1 query
2 → sfw_query
3 | expr_query
4 sfw_query
5 → (WITH query AS variable)?
6 select_clause
7 from_clause
8 (WHERE expr_query)?
9 (GROUP BY expr_query (AS variable)?

10 (, expr_query (AS variable)?)*)?
11 GROUP AS variable
12 (HAVING expr_query)?
13 ((OUTER)? (UNION|INTERSECT|EXCEPT) ALL? sfw_query)?
14 ((ORDER BY (expr_query (ASC|DESC)? order_spec?
15 (, expr_query (ASC|DESC)? order_spec?)*)? )
16 | PRESERVE)?
17 (LIMIT expr_query)?
18 (OFFSET expr_query)?
19 expr_query
20 → ( sfw_query )
21 | path_expr
22 | function_name ( (expr_query (, expr_query)*)? )
23 | { (expr_query:expr_query (, expr_query:expr_query)*)? }
24 | [ (expr_query (, expr_query)*)? ]
25 | << (expr_query (, expr_query)*)? >>
26 | sql_scalar_expr
27 | value_constant
28 path_expr
29 → variable
30 | ( expr_query )
31 | path_expr . attr_name
32 | path_expr [ expr_query ]
33 | path_expr . *
34 | path_expr [ * ]

Figure 3: BNF Grammar for PartiQL Queries

PartiQL may be seen as a functional programming language with composable semantics. Three aspects of the
PartiQL syntax and semantics are characteristic of its functional orientation: First, every (sub-)query and every (sub-
)expression input and output PartiQL data. Second, each clause of an SFW query (SELECT-FROM-WHERE) is itself a
function. Third, every (sub-)query evaluates within an environment created by the database names and the variables
of the enclosing queries.

3.1 Basics of PartiQL Syntax
A PartiQL query is either an SFW query (i.e. SELECT-FROM-WHERE-. . ., (Figure 3, lines 4–18) of the grammar of Figure
3) or an expression query (also called simple expression in the rest, lines 19–34) such as a path expression (Figure 3,
lines 28–34) or a function invocation. Unlike SQL expressions, which are restricted to outputting scalar and null
values, PartiQL expressions output arbitrary PartiQL values, and are fully composable within larger SFW queries and
expressions. Indeed, PartiQL allows the top-level query to also be an expression query, not just a SFW query as in
SQL.

An PartiQL (sub)query is evaluated within an environment, which provides variable bindings (as defined next).

3.2 Environments

1 bind_name → global_name
2 | variable
3 qualified_name → identifier (. identifier)+
4 variable_name → identifier
5 identifier → ($ | _ | letter) ($ | _ | letter | digit)*
6 | " quoted_identifier_body "

Figure 4: BNF Grammar for PartiQL Names

Each PartiQL (sub-)query and PartiQL (sub-)expression q is evaluated within the database environment ρ0 created
by the database names and the variables environment ρ created by the defined query variables. The pair of these
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environments, (ρ0, ρ) is collectively called the bindings environment.
In either case, an environment is a binding tuple 〈x1 : v1, . . . , xn : vn〉, where each xi is a bind name (Figure 4,

lines 4–18) that is unique and binds to the PartiQL value vi. The two distinct environments may also be thought of
as global (the database object names) and local (the lexically defined variables in a particular scope of the query).

Similarly, for a given q at compile (i.e. planning) time, a database type environment, Γ0, and variables type
environment, Γ are defined. The type environment is a binding tuple 〈x1 : τ1, . . . , xn : τn〉, where each xi is a name
that is unique and binds to the PartiQL type τi. For schema-less values, τ can be considered the union of any possible
type (for which all operations are potentially applicable). This is discussed in more detail in Section 15.

Qualified names (Figure 4, line 3) only ever appear in the database environment. Lexically defined variable names
(Figure 4, line 4) are always just simple identifiers (Figure 4, lines 5–6) . For example, a relational database might
define a compound name mydb.log, where mydb is the schema (and not actually a value) and log could be a table
name within that schema. Note, that a qualified name is distinct from a quoted identifier that contains a dot. Thus,
the qualified name mydb.log is distinct from the bind name "mydb.log".

Example 1. Let us assume that we evaluate the following query on the database of Figure 2, whose top-level value
is named mydb.log.

SELECT x.resourceId
FROM mydb.log.configurationItems x

The query is evaluated within the database environment

ρ0 = 〈mydb.log : { ’fileversion’:’1.0’, ’configurationItems’: . . . }〉
and the variables environment ρ1 = 〈〉. Notice the database environment ρ0 has a single name/value pair, which
corresponds to the only name (mydb.log) of the database of Figure 2. The variables environment has no name/value
pair because the above query is not a subquery of a larger query.

Next, consider the subexpression x.resourceId of the example’s query. This subexpression will, generally, be
evaluated many times - once for each x. Technically, each time it is evaluated within the same database environment
ρ0 and within a variables environment ρ2 = 〈x : . . .〉, i.e., a variables environment that defines the variable x.

Remark on relationship of binding tuples to PartiQL tuples A binding tuple is similar to a PartiQL tuple, if
you think of the bind names as attribute names. The characterization “binding” pertains to its use in the semantics
(e.g. an association of names to types) and the fact that qualified names are not reified in the PartiQL data model, and
we have a representation. As we will see collections of binding tuples will be homogenous, i.e., they will all have the
same “attribute” names. Also important, is that when we represent binding tuples we explicitly represent a variable
with a MISSING value, as opposed to omitting it because the lack of a variable name is distinct from a variable whose
value is MISSING. For example, we write 〈x : 1, y : MISSING〉, instead of 〈x : 1〉.•
Evaluation in environment The notation (ρ0, ρ) ` q → v denotes that the PartiQL query q evaluates to the value
v when evaluated within the database environment ρ0 and the variables environment ρ, i.e. when every variable of q
is instantiated by its binding in ρ and each database name is instantiated to its value in ρ0. For example, consider
the query x + y / 2, the database environment ρ0 = 〈x : 5〉 and the variables environment ρ = 〈y : 3〉. Then
ρ0, ρ ` (x + y)/2→ 5+3/2→ 4.

3.3 The semantics of each clause of an SFW query explained as input and output of
binding tuples

The semantics of PartiQL are shorter than the semantics of SQL itself—despite being backwards compatible with
SQL. The key reason is that the semantics of each clause of an SFW query in the PartiQL core can be understood
in isolation from the other clauses. A clause is simply a function that inputs and outputs binding tuples. Thus the
specifics of how the binding tuples of a query and of its subqueries are produced are a central part of the semantics.
At a high level (which will be elaborated upon later) the construction of binding environments proceeds as follows:

1. When a query is submitted to a database, it is evaluated in an empty variables environment ρ = 〈〉.
2. The FROM clause of a SFW query produces new environments by concatenating bindings of the FROM variables to the

environment of its SFW query, as explained below.
The subqueries that appear in the WHERE, SELECT, etc clauses are evaluated in these new environments. The optional
GROUP BY clause also produces additional variable bindings, as explained in Section 11.
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ρ0 : 〈mydb.r : [3, ’x’ ], mydb.s : <<{’a’:1, ’b’:2}, {’a’:3} >>〉
ρ : 〈〉

FROM mydb.r AS x, mydb.s AS y
Bout

FROM = Bin
WHERE =<<〈x:3, y:{’a’:1, ’b’:2}〉

〈x:3, y:{’a’:3}〉
〈x:’x’, y:{’a’:1, ’b’:2}〉
〈x:’x’, y:{’a’:3}〉
>>

WHERE x > y.b
Bout

WHERE = Bin
SELECT =<< 〈x:3, y:{’a’:1, ’b’:2}〉 >>

SELECT x AS foo, y.a AS bar
Result: << {foo:3, bar:1} >>

Figure 5: An Example SFW Query with Flow of Binding Tuples

SFW query clauses as operators that input/output binding tuples Similar to SQL semantics, the clauses
of an PartiQL SFW query are evaluated in the following order: WITH, FROM, LET, WHERE, GROUP BY, HAVING, LETTING
(which is special to PartiQL), ORDER BY, LIMIT / OFFSET and SELECT (or SELECT VALUE or PIVOT, which are both
special to ion PartiQL). 2

Using the example of Figure 5, we illustrate how the clauses of an SFW query input and output binding tuples. In
the Figure 5, the FROM, WHERE and SELECT clauses of the example query are displayed apart from each other so that
the example can also illustrate the binding tuples that flow from the one clause to the next.

The query is evaluated within the bindings environment (ρ0, ρ) shown at the top of Figure 5. Consequently, the
FROM clause is evaluated in the same environment. Thereafter the FROM clause outputs the bag of binding tuples Bout

FROM,
which has four binding tuples in the example. In each binding tuple of Bout

FROM, each variable of the FROM clause is bound
to a value. There are no restrictions that a variable binds to homogenous values across binding tuples. In the example,
x binds to two values that are heterogeneous: some bindings of x bind to a number, while others to a string. It would
also be possible that a variable binds to, say, a scalar in one binding, while the same variable binds to a complex value
in another binding.

Each subsequent clause inputs a bag of binding tuples, evaluates the constituent expressions of the clause (which
may themselves contain nested SFW queries), and outputs a bag of binding tuples that is in turn input by the next
clause. For instance, the WHERE clause inputs the bag of binding tuples that have been output by the FROM clause
(Bout

FROM = Bin
WHERE), and outputs the subset thereof that satisfies the condition expression of the WHERE clause. This

subset is the Bout
WHERE = Bin

SELECT.
In particular, the WHERE’s condition is evaluated once for each input binding tuple b in Bin

WHERE. In general, each
evaluation is done within the bindings environment (ρ0, ρ‖b), i.e., the concatenation of the binding tuple ρ (where ρ is
the binding environment of the SFW query) with the binding tuple b that has the variables of the FROM clause. In the
particular example ρ‖b is simply b since ρ = 〈〉. The condition x > y.b is evaluated once for each of the four input
binding tuples of Bin

WHERE. The variables environment of the first evaluation is:

ρ = 〈x : 3, y : {’a’:1, ’b’:2}〉

The WHERE condition evaluates to true for the first binding tuple of Bin
WHERE, since

(ρ0, ρ) ` x > y.b→ 3 > {’a’:1, ’b’:2}.b→ true

Thus the first binding tuple of Bin
WHERE is output from the WHERE and is input to SELECT.

The pattern of “input bag of binding tuples, evaluate constituent expressions, output bag of binding tuples” has
a few exceptions: First, the ORDER BY clause inputs a bag of binding tuples and outputs an array of binding tuples.
Second, a LIMIT/OFFSET clause need not evaluate its constituent expression for each input binding tuple. For example
a “LIMIT 10" clause that inputs an array with 100 binding tuples need not access binding tuples 11-100.

Finally, the SELECT clause is responsible for converting from binding tuples to collections of arbitrary PartiQL
elements. The SELECT inputs a bag (or array, if ORDER BY is present) of binding tuples, and outputs the SFW query’s
result, which is a bag (resp. array) with exactly one element for each input binding tuple. In the example, the SELECT
expressions x and y.a are evaluated once for each of the input binding tuples of Bin

SELECT, which in this example happen
to be just one binding tuple.

2PartiQL also supports a syntax improvement where SELECT is optionally written as the last clause since, anyway, that’s the proper way
to read an SQL query.
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Finally, notice that the above discussion of SFW queries did not capture the set operators UNION, INTERSECT and
EXCEPT. As is the case with SQL semantics too, the coordination of ORDER BY with the set operators requires attention,
as discussed in Section ??.

PartiQL clauses as operators In summary, each clause of PartiQL is an operator that inputs/outputs binding
tuples. As such, we can (and will) present the semantics of each clause separately from the semantics of the other
clauses. This is not the case in SQL: Notably, in the presence of aggregation functions the SELECT, HAVING and WHERE
cannot be interpreted in isolation; they can only be interpreted along with the GROUP BY clause.

3.4 Scoping Rules of Variables
As in any programming language, the PartiQL semantics have to deal with issues of variable scope. For example, how
are references to x resolved in the following query:

SELECT x.a AS a
FROM db1 AS x
WHERE x.b IN (SELECT x.c FROM db2 AS x)

Since this is an SQL query and PartiQL is backwards compatible to SQL, it is easy to tell that the x in x.c resolves
to the variable x defined by the inner query’s FROM clause.

Technically, this scoping rule is captured by the following handling of binding tuples. The inner FROM clause is
evaluated with a variables environment ρ = 〈x : . . .〉; its x is the one defined by the outer FROM. Then the inner FROM
clause outputs a binding b = 〈x : . . .〉; this x is defined by thinner FROM. Then the x.c is evaluated in the concatenation
ρ‖b and because x appears in both ρ and b, the concatenation keeps only the x of its right argument. Essentially by
putting b as the right argument of the concatenation, the semantics indicate that the variables of b have precedence
over synonymous variables in the left argument (which was the ρ).

Generally, given two binding tuples b and b′, their concatenation is a binding tuple, denoted as b‖b′, that has the
variable bindings of both b and b′. This creates the possibility that both b and b′ have the same variable x. In this
case, the concatenation b||b′ will have the b′.x and its value; it will not have the b.x and its value.

Note, the above does not resolve scoping issues resulting from conflicts between the database environment and the
variables environment. We resolve these conflicts by explicit rules.
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4 Path Navigation
Tuple path navigation A tuple path navigation t.a from the tuple t to its attribute a (Figure 3, lines 32–33)
returns the value of the attribute a. (We discuss below the corner case where a tuple has multiple attributes a.) t is
an expression but a is always an identifier (Figure 4, lines 5–6) . For example:

{'a': 1, 'b':2}.a ⇔ {'a': 1, 'b':2}."a" → 1

Even if there were a variable a, bound to ’b’, the result of the above expression would still be 1, because the identifier
a (or "a") is interpreted as the “look for the attribute named a” when it follows the dot in a tuple path navigation.
The semantics of tuple path navigation do not depend on whether the tuple is ordered or unordered by schema.

Array navigation An array navigation a[i] returns the i-th element when it is applied on an array a (Figure 3,
line 32) and i is an expression that evaluates into an integer. Both a and i are expressions. For example:

[2, 4, 6][1+1] → 6.

Tuple navigation with array notation The expression a[s] is a shorthand for the tuple path navigation a.s when
the expression s is either (a) a string literal or (b) an expression that is explicitly CAST into a string. For example:

{'a': 1, 'b': 2}['a'] ⇔ {'a': 1, 'b':2}.'a' → 1

Similarly:

{'attr': 1, 'b':2}[CAST('at' || 'tr' AS STRING)] → 1

If s is not a string literal or an expression that is cast into a string, then a[s] is evaluated as an array path navigation.
Notice that in the absence of an explicit cast, the navigation a[e] evaluates as an array navigation, even if e ends up
evaluating to a string. For example, let us assume that the variable v is bound to ’at’ and the variable w is bound to
’tr’. Still, the expression:

{'attr': 1, 'b':2}[v || w]

does not evaluate to 1. It is treated as an array navigation with wrongly typed index and it will return missing, for
reasons explained below.

Composition of navigations Notice that consecutive tuple/array navigations (e.g. r.no[1]) navigate deeply into
complex values. Notice further that paths consisting of plain tuple and array path navigations evaluate to a unique
value.

Tuple navigation in tuples with duplicate attributes When the tuple t has multiple attributes a, the tuple
path navigation t.a will return the first instance of a. Note that for tuples whose order is defined by schema, this is
well-defined, for unordered tuples, it is implementation defined which attribute is returned in permissive mode or an
error in type checking mode, which is described in Section 4.1.

If one wants to access all instances of a, she should use the UNPIVOT feature instead (see Section 5.2). For example,
the following query returns the list of all a values in a tuple t.

SELECT VALUE v
FROM UNPIVOT t AS v AT attr
WHERE attr = 'a'
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4.1 Tuple path evaluation on wrongly typed data
In the case of tuple paths, since PartiQL does not assume a schema, the semantics must also specify the return value
when:

1. t is not a tuple (i.e., when the expression t does not evaluate into a tuple), or
2. t is a tuple that does not have an a attribute.

Permissive mode PartiQL can operate in a permissive mode or in a conventional type checking mode, where the
query fails once typing errors (such as the above mentioned ones) happen. In the permissive mode, typing errors are
typically neglected by using the semantics outlined next.

In all of the above cases PartiQL returns the special value missing. Recall, the missing is different from null.
The distinction enables PartiQL to be able to distinguish between a tuple (JSON object) that lacked an attribute a
and a tuple (JSON object) whose a attribute was null. This distinction, coupled with appropriate features on how
result tuples are constructed (see SELECT clause in Section 6), enables PartiQL to easily preserve (when needed) the
distinction between absent attribute and null-valued attribute.

For example, the expression ’not a tuple’.a and the expression {’a’:1, ’b’:2}.noSuchAttribute evaluate to
missing.

The above semantics apply regardless of whether the tuple navigation is accomplished via the dot notation or via
the array notation. For example, the expression {’a’:1, ’b’:2}[’noSuchAttribute’] will also evaluate to missing.

Type checking mode In the type checking mode and in the absence of schema, PartiQL will fail when tuple path
navigation is applied on wrongly typed data.

4.1.1 Role of schema in type checking

In the presence of schema, PartiQL may return a compile-time error when the query processor can prove that the path
expression is guaranteed to always produce MISSING. The extent of error detection is implementation-specific.

For example, in the presence of schema validation, an PartiQL query processor can throw a compile-time error when
given the path expression {a:1, b:2}.c. In a more important and common case, an PartiQL implementation can
utilize the input data schema to prove that a path expression always returns MISSING and thus throw a compile-time
error. For example, assume that sometable is an SQL table whose schema does not include an attribute c. Then, an
PartiQL implementation may throw a compile-time error when evaluating the query:

SELECT t.a, t.c FROM sometable AS t

Apparently, such an PartiQL implementation is fully compatible with the behavior of an SQL processor. Generally,
if a rigid schema is explicitly present, a tuple path navigation error can be caught during compilation time; this is the
case in SQL itself, where referring to a non-existent attribute leads to a compilation error for the query.

Notice that operating with schema validation may not prevent all tuple path navigations from being applied to
wrongly typed data. The choice between permissive mode versus type checking mode dictates what happens next in
these cases: If permissive, the tuple path navigation evaluates into MISSING. If in type checking mode, the query fails.

4.2 Array navigation evaluation on wrongly typed data
In the permissive mode, an array navigation evaluation a[i] will result into missing in each of the following cases:

• a does not evaluate into an array, or

• i does not evaluate into a positive integer within the array’s bounds.

For example, [1,2,3][1.0] evaluates to missing since 1.0 is not an integer - even though it is coercible to an
integer.

In type checking mode, the query will fail in each one of the cases above.

4.3 Additional Path Syntax
The following additional path functionalities are explained by reduction to the basic tuple navigation and array
navigation.
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Wildcard steps The expression e[∗] reduces to (i.e., is equivalent to):

SELECT VALUE v FROM e AS v

where v is a fresh variable, i.e., a variable that does not already appear in the query. Similarly, when the expression
e.∗ is not a SELECT clause item of the form t.∗, where t is a variable, it reduces to:

SELECT VALUE v FROM UNPIVOT e AS v

where v is a fresh variable. An expression t.∗, where t is a variable and the expression appears as a SELECT clause
item, is interpreted according to the SELECT clause * semantics (Section 6.3.2).

Example 2. The expression:

[1,2,3][*] ⇔ SELECT VALUE v FROM [1, 2, 3] AS v
→ <<1, 2, 3>>

The expression:

{'a':1, 'b':2}.* ⇔ SELECT VALUE v FROM UNPIVOT {'a':1, 'b':2} AS v
→ <<1, 2>>

Whereas the following query:

SELECT t.* FROM <<{'a':1, 'b':1}, {'a':2, 'b':2}>> AS t
→ <<{'a':1, 'b':1}, {'a':2, 'b':2}>>

does not do the transformation with UNPIVOT. If one does not want this behavior, SELECT VALUE can be used (Section 6).

Path Expressions with Wildcards PartiQL also provides multi-step path expressions, called path collection ex-
pressions. Their semantics is a generalization of the semantics of a path expression with a single [∗] or .∗. Consider
the path collection expression:

ew1p1 . . . wnpn

where e is any expression; n > 0; each wildcard step wi is either [∗] or .∗; each series of plain path steps pi is a sequence
of zero or more tuple path navigations or array navigations (potentially mixed).

Then the path collection expression is equivalent to the SFW query

SELECT VALUE vn.pn

FROM
u1 e AS v1,
u2 @v1.p1 AS v1,
. . .,
un @vn−1.pn−1 AS vn,

where each vi is a fresh variable and each ui is UNPIVOT if wi is a .∗ and it is nothing if wi is a [∗]. Intuitively vi

corresponds to the i-th star.

Example 3. According to the above, consider the following query:

SELECT VALUE foo FROM e.* AS foo
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reduces to

SELECT VALUE foo FROM (SELECT VALUE v FROM UNPIVOT e AS v) AS foo

which is equivalent to

SELECT VALUE foo FROM UNPIVOT e AS foo

Next, consider the path collection expression:

tables.items[*].product.*.nest

This expression reduces to

SELECT
VALUE v2.nest

FROM
tables.items AS v1,
UNPIVOT @v1.product AS v2
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5 FROM Clause Semantics
The formal semantics of a FROM clause describe the collection of binding tuples Bout

FROM that is output by the FROM clause.
The semantics specify three cases and essentially extend the tuple calculus that underlies the SQL semantics.

1. The semantics specify what is the core semantics of a FROM clause with a single FROM item (Sections 5.1 and 5.2).
The term “semantics of the FROM item f” is synonymous to the term “semantics of a FROM clause with the single
item f”. In either case, we refer to the specification of the collection of binding tuples Bout

FROM that results from
the evaluation of “FROM f”.

2. Then the semantics specify how multiple FROM items combine, according to the core semantics, using the join
and outerjoin operations (Sections 5.3, 5.4 and 5.5).

3. Finally, the semantics specify the syntactic sugar structures that are overlaid over the core semantics. Their
primary purpose is SQL compatibility.

5.1 Ranging Over Bags and Arrays
Next we define the semantics of a FROM clause that has a single FROM item and such item ranges over a bag or array.
First consider the FROM clause:

FROM a AS v AT p

Let us call v to be the element variable and p to be the position variable. In the normal case, a is an array [e0, . . . , en−1].
The FROM clause outputs a bag of binding tuples. For each ei, the bag has a binding tuple 〈v : ei, p : i〉.

Example 4. Consider the following ρ0 (database environment):

ρ0 = 〈
someOrderedTable:[

{'a':0, 'b':0},
{'a':1, 'b':1}

]
〉

then the following FROM clause:

FROM someOrderedTable AS x AT y

outputs the bag of binding tuples:

Bout
FROM =<<〈 x:{'a':0, 'b':0}, y:0 〉

〈 x:{'a':1, 'b':1}, y:1 〉
>>

As in SQL, the keyword AS is optional. The same applies to all cases below where AS appears. If there is no AT
clause, then the binding tuples have only the element variable. In particular, consider:

FROM a AS v

Normally a is a collection, i.e, an array [e0, . . . , en−1] or a bag << e0, . . . , en−1 >>. In either case, the FROM clause
outputs a bag. For each ei, the bag has a binding tuple 〈v : ei〉.

Example 5. Consider again the database of Example 4 and then the FROM clause

FROM someOrderedTable AS x
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this FROM clause outputs:

Bout
FROM =<<〈 x:{'a':0, 'b':0} 〉

〈 x:{'a':1, 'b':1} 〉
>>

5.1.1 Mistyping Cases

In the following cases the expression in the FROM clause item has the wrong type. Under the type checking option, all
of these cases raise an error and the query fails. Under the permissive option, the cases proceed as follows

• Position variable on bags: Consider the clause:

FROM b AS v AT p

and assume that b is a bag << e0, . . . , en−1 >>. The output is a bag with binding tuples 〈v : ei, p : MISSING〉.
The value MISSING for the variable p indicates that the order of elements in the bag was meaningless.

• Iteration over a scalar value: Consider the query:

FROM s AS v AT p

or the query:

FROM s AS v

where s is a scalar value. Then s coerces into the bag << s >>, i.e., the bag that has a single element, the s. The
rest of the semantics is identical to what happens when the lhs of the FROM item is a bag.

Example 6. Consider again the database of Example 4 and the FROM clause:

FROM someOrderedTable[0].a AS x

The expression someOrderedTable[0].a evaluates to 0 and, consequently, the FROM clause outputs a single
binding tuple:

Bout
FROM =<< 〈 x:0 〉 >>

• Iteration over a tuple value: Consider the query:

FROM t AS v AT p

or the query:

FROM t AS v

where t is a tuple. Then t coerces into the bag << t >>

• Iteration over an absent value: Consider the query
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FROM a AS v AT p

or the query

FROM a AS v

whereas a evaluates into an absent_value (i.e., either MISSING or NULL). In either case the absent_value a coerces
into the bag << a >>. Then the semantics follow the normal case.

Example 7. Consider again the database of Example 4 and the FROM clause

FROM someOrderedTable[0].c AS x

The expression someOrderedTable[0].c evaluates to MISSING and, consequently, the FROM clause outputs the
binding tuple:

Bout
FROM =<< 〈 x:MISSING 〉 >>

5.2 Ranging over Attribute-Value Pairs
The UNPIVOT clause enables ranging over the attribute-value pairs of a tuple. The FROM clause

FROM UNPIVOT t AS v AT a

normally expects t to be a tuple, with attribute/value pairs a1 : v1, . . . , an : vn. It does not matter whether the tuple
is ordered or unordered. The FROM clause outputs the collection of binding tuples

Bout
FROM =<< 〈v : v1, a : a1〉 . . . 〈v : vn, a : an〉 >>

Example 8. Consider the ρ0:

ρ0 = 〈
justATuple: {'amzn': 840.05, 'tdc': 31.06}

〉

The FROM clause:

FROM UNPIVOT justATuple AS price AT symbol

outputs:

Bout
FROM =<<〈price: 840.05, symbol:'amzn'〉

〈price: 31.06, symbol:'tdc'〉
>>

5.2.1 Mistyping Cases

In the following cases the expression in the FROM UNPIVOT clause item has the “wrong" type, i.e., it is not a tuple.
Under the type checking option, all of these cases raise an error and the query fails. Under the permissive option, the
cases proceed as follows:

FROM UNPIVOT x AS v AT n
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whereas x is not a tuple and is not MISSING, is equivalent to:

FROM UNPIVOT {'_1': x} AS v AT n

Effectively, a tuple is generated for the non-tuple value. When x is MISSING then the above is equivalent to:

FROM UNPIVOT {} AS v AT n

remember that a tuple cannot contain MISSING. So the present case is equivalent to the empty tuple case.

5.3 Combining Multiple FROM Items with Comma, CROSS JOIN, or JOIN

The FROM clause expressions:

l , r ⇔
l CROSS JOIN r ⇔
l JOIN r ON TRUE ⇔

have the same semantics. They combine the bag of bindings produced from the FROM item l with the bag of binding
tuples produced by the FROM item r, whereas the expression r may utilize variables defined by l. Again, the term “the
semantics of l CROSS JOIN r” is equivalent to the term “the semantics of FROM l CROSS JOIN r”. In both cases, the
semantics specify a bag of binding tuples.

Associativity of CROSS JOIN We explain the CROSS JOIN and “,” as if they are left associative binary operators,
despite the fact that one can write more than two FROM items without specifying grouping with parenthesis. Since the
“,” and CROSS JOIN operators are associative, we may write (as is common in SQL):

f1, f2, f3 ⇔
f1 CROSS JOIN f2 CROSS JOIN f3 ⇔
f1 LEFT JOIN f2 ON TRUE CROSS JOIN f3 ON TRUE ⇔
(f1, f2), f3 ⇔
(f1 CROSS JOIN f2) CROSS JOIN f3 ⇔
(f1 LEFT JOIN f2 ON TRUE) CROSS JOIN f3 ON TRUE ⇔

Semantics Consider the following:

l CROSS JOIN r

unlike SQL, the rhs r of the expression may use variables defined by the lhs item l. The result of this expression
for a database environment ρ0 and variables environment ρ is the bag of binding tuples produced by the following
pseudo-code. The pseudo-code uses the function eval(ρ0, ρ, e) that evaluates the expression e within the environments
ρ0 and ρ, i.e., ρ0, ρ ` e→ eval(ρ0, ρ, e).

for each binding tuple bl in eval(ρ0, ρ, l)
for each binding br in eval(ρ0, (ρ‖bl), r)

add bl‖br to the output bag

In other words, the “l CROSS JOIN r” outputs all binding tuples b = bl‖br, where bl ∈ eval(ρ0, ρ, l) and br ∈
eval(ρ0, (ρ‖bl), r). The key extension to SQL is that r is evaluated in the variables environment ρ‖bl, i.e., it can use
the variables that were defined by l. The details of the variable scoping aspects are described in Section 3.4.

Example 9. This example simply reminds the tuple calculus explanation of the FROM SQL semantics. It does not yet
endeavor into special aspects of PartiQL. Consider the following database, which is conventional SQL:
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ρ0 = 〈
customers: [

{'id': 5, 'name': 'Joe'},
{'id': 7, 'name': 'Mary'}

],
orders: [

{'custId': 7, 'productId': 101},
{'custId': 7, 'productId': 523}

]
〉

Then consider the following FROM clause, which could be coming from a conventional SQL query:

FROM customers AS c, orders AS o

Note that in PartiQL this could also be written using the CROSS JOIN keyword, and presumably, one would put the
sensible equality condition c.id=o.custId in the WHERE clause. At any rate, this FROM clause outputs the bag of
binding tuples:

Bout
FROM =<<〈 c: {'id': 5, 'name': 'Joe'}, o: {'custId': 7, 'productId': 101} 〉

〈 c: {'id': 5, 'name': 'Joe'}, o: {'custId': 7, 'productId': 523} 〉
〈 c: {'id': 7, 'name': 'Mary'}, o: {'custId': 7, 'productId': 101} 〉
〈 c: {'id': 7, 'name': 'Mary'}, o: {'custId': 7, 'productId': 523} 〉
>>

Due to scoping rules that will be justified and elaborated in Section 10, when the rhs of a CROSS JOIN is a path or a
function that uses a variable named n, such variable must be referred as @n.

Example 10. Consider the database:

ρ0 = 〈
sensors: [

{'readings': [{'v': 1.3}, {'v': 2}]},
{'readings': [{'v': 0.7}, {'v': 0.8}, {'v': 0.9}]}

]
〉

Intuitively, the following FROM clause unnests the tuples that are nested within the readings.

FROM sensors AS s, s.readings AS r

Bout
FROM =<<〈 s: {'readings': [{'v': 1.3}, {'v': 2}]}, r: {v:1.3} 〉,

〈 s: {'readings': [{'v': 1.3}, {'v': 2}]}, r: {v:2} 〉,
〈 s: {'readings': [{'v': 0.7}, {'v': 0.8}, {'v': 0.9}]}, r: {'v':0.7} 〉,
〈 s: {'readings': [{'v': 0.7}, {'v': 0.8}, {'v': 0.9}]}, r: {'v':0.8} 〉,
〈 s: {'readings': [{'v': 0.7}, {'v': 0.8}, {'v': 0.9}]}, r: {'v':0.9} 〉,
>>

5.4 Combining Multiple FROM Items with LEFT JOIN

The FROM clause expression:

l LEFT CROSS JOIN r ⇔
l LEFT JOIN r ON TRUE
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replicates SQL’s LEFT JOIN functionality and, in addition, it also works for the case where the lhs of r uses variables
defined from l.

Let’s assume that the variables defined by r are vr
1, . . . , v

r
n. The result of evaluating l LEFT CROSS JOIN r in

environments ρ0 and ρ is the bag of binding tuples produced by the following pseudocode, which also uses the eval
function (See Section 5.3).

for each binding bl in eval(ρ0, ρ, l)
Br ← eval(ρ0, (ρ‖bl), r)
if Br is the empty bag
add bl‖〈vr

1 : NULL . . . vr
n : NULL〉 to the output bag

else
for each binding br in Br

add bl‖br to the output bag

Example 11. Consider the database:

ρ0 = 〈
sensors: [

{'readings': [{'v':1.3}, {'v':2}]}
{'readings': [{'v':0.7}, {'v':0.8}, {'v':0.9}]},
{'readings': []}

]
〉

Notice that the value of the last tuple’s readings attribute is the empty array. The following FROM clause unnests the
tuples that are nested within the readings but will also keep around the tuple with the empty readings. (See the
last binding tuple.)

FROM sensors AS s LEFT CROSS JOIN s.readings AS r

Bout
FROM =<<〈 s: {'readings': [{'v':1.3}, {'v':2}]}, r: {'v':1.3} 〉,

〈 s: {'readings': [{'v':1.3}, {'v':2}]}, r: {'v':2} 〉,
〈 s: {'readings': [{'v':0.7}, {'v':0.8}, {'v':0.9}]}, r: {'v':0.7} 〉,
〈 s: {'readings': [{'v':0.7}, {'v':0.8}, {'v':0.9}]}, r: {'v':0.8} 〉,
〈 s: {'readings': [{'v':0.7}, {'v':0.8}, {'v':0.9}]}, r: {'v':0.9} 〉,
〈 s: {'readings': []}, r: NULL 〉,
>>

5.5 Combining Multiple FROM Items with FULL JOIN

The FROM clause expression:

l FULL JOIN r ON *$c$*

replicates SQL’s FULL JOIN functionality. It assumes that (alike SQL) the lhs of r does not use variables defined from
l. Thus, we do not discuss further.

5.6 Expanding JOIN and LEFT JOIN with ON

In compliance to SQL, the JOIN and LEFT JOIN have an optional ON clause. The semantics of ON can be explained as
syntactic sugar over the core PartiQL. They can also be explained by a simple extension of the semantics of Sections 5.3,
5.4, and 5.5. The semantics of:

l JOIN r ON c
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are the following modification of the pseudocode of Section 5.3. The modification is the inclusion of the underlined
line.

for each binding bl in eval(ρ0, ρ, l)
for each binding br in eval(ρ0, (ρ‖bl), r)

if eval(ρ0, (ρ‖bl‖br), c) is true
add bl‖br to the output bag

The semantics of:

l LEFT JOIN r ON c

are the following modification of the pseudocode of Section 5.4. In essence, the LEFT JOIN ON outputs a tuple padded
with NULL whenever there is no binding of r that satisfies the condition c.

for each binding bl in eval(ρ0, ρ, l)
Br ← eval(ρ0, (ρ‖bl), r)
Qr ←<<>>
for each binding br in Br

if eval(ρ0, (ρ‖bl‖br), c) is true
add br in Qr

if Qr is the empty bag
add bl‖〈vr

1 : NULL . . . vr
n : NULL〉 to the output bag

else
for each binding br in Qr

add bl‖br to the output bag

5.7 SQL’s LATERAL

SQL 2003 used the LATERAL keyword to correlate FROM clause items. In the interest of compatibility with SQL, PartiQL
also allows the use of the keyword LATERAL, though it does not do anything more than the comma itself would do.
That is “l , LATERAL r” is equivalent to “l , r”.
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6 SELECT clauses
Core PartiQL SFW queries have a SELECT VALUE clause (in lieu of SQL’s SELECT clause) that can create outputs that
are collections of anything (e.g., collections of tuples, collections of scalars, collections of arrays, collections of mixed
type elements, etc.) Section 6.1 describes the SELECT VALUE clause.

SQL’s well-known SELECT clause can be used as a mere syntactic sugar over SELECT VALUE, when we consider
the top-level query. In particular, Section 6.3 shows that SQL’s SELECT is the special case where the SELECT VALUE
produces collections of tuples. Furthermore, when SELECT is used as a subquery it is coerced into a scalar or a tuple,
in the ways that SQL coerces the results of subqueries.

Section 14 describes PIVOT, which can be used instead of SELECT VALUE. PIVOT creates a tuple, with a data
dependent number of attribute/value pairs, where not only the values but the attributes as well could be originating
from the data found in the binding tuples.

6.1 SELECT VALUE core clause
The SELECT VALUE clause inputs a bag of binding tuples or an array of binding tuples (from the other clauses of the
SQL query) and outputs a bag or an array. For example, if the query only has SELECT VALUE, FROM, and WHERE clauses,
then the bindings that are output by the WHERE clause are input by the SELECT VALUE clause. Unlike SQL, the output
of a SELECT VALUE clause need not be a bag or array of tuples. It is a bag or array of any kind of PartiQL values. For
example, it may be a bag of integers, or a bag of arrays, etc. Indeed, the values may be heterogeneous. For example,
the output may even be a bag that has both integers and arrays.

The core PartiQL clause:

SELECT VALUE e

inputs a bag or an array (depending on the presence or non-presence of ORDER BY) of binding tuples and outputs
respectively a bag or an array of values. Let ρ0 and ρ be the environments of the SFW query. For each input binding
tuple b ∈ Bin

SELECT, SELECT VALUE outputs a value v, where ρ0, (ρ‖b) ` e → v. Notice that PartiQL expressions e
(Figure 3 lines 19–34) will typically be tuple or array or bag constructors (Figure 3, lines 23–25), which enable the
construction of respective results. In general e can be any expression.

Example 12. This example illustrates a SELECT VALUE that creates a collection of numbers.

SELECT VALUE 2*x.a
FROM [{'a':1}, {'a':2}, {'a':3}] as x

The result is <<2, 4, 6>>.

6.1.1 Tuple constructors

A tuple constructor is of the form

{a1:e1, . . ., an:en}

whereas a1 . . . an, e1 . . . en are expressions, potentially being themselves constructors.

Example 13. The query:

SELECT VALUE {'a':v.a, 'b':v.b}
FROM [{'a':1, 'b':1}, {'a':2, 'b':2}] AS v

results into <<{'a':1, 'b':1}, {'a':2, 'b':2}>>.
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Treatment of mistyped attribute names It is possible that an expression ai that computes an attribute name
results into a non-string, i.e., a value that is not a legitimate attribute name. In such cases, under the permissive mode
the attribute-value pair will be dismissed. Under the type checking mode the query will fail.

Example 14. In the permissive mode, the query:

SELECT VALUE {v.a: v.b}
FROM [{'a':'legit', 'b':1}, {'a':400, 'b':2}] AS v

results into <<{'legit':1}, {}>>. Notice that the attempt to create an attribute named 400 failed, thus leading to
a tuple with no attributes.

Treatment of duplicate attribute names It is possible that the constructed tuples contain twice or more the
same attribute name.

Example 15. The query:

SELECT VALUE {v.a: v.b, v.c: v.d}
FROM [{'a':'same', 'b':1, 'c':'same', 'd':2}] AS v

results into <<{'same':1, 'same':2}>>. Recall, a same path will only pick one of the two values.

6.1.2 Array Constructors

An array constructor has the form:

[e0, . . ., en−1]

where e1 . . . en−1 are expressions. Notice that the arrays produced by such constructor will always have size n.

Example 16. The query:

SELECT VALUE [v.a, v.b]
FROM [{'a':1, 'b':1}, {'a':2, 'b':2}] AS V

results into <<[1, 1], [2, 2]>>

In the interest of compatibility to SQL, PartiQL also allows array constructors to be denoted with parentheses
instead of brackets, when there are at least two elements in the array, i.e., n ≥ 2:

(e0, . . ., en−1)

See Section 9.2 for uses of this feature in SQL compatibility.

6.1.3 Bag Constructors

A bag constructor has the form:

<<e0, . . ., en−1>>

where e1 . . . en are expressions.

Example 17. The query:

August 1, 2019 Page 25 of 48



— DRAFT — 6.2 Pivoting a Collection into a Variable-Width Tuple

SELECT VALUE <<v.a, v.b>>
FROM [{'a':1, 'b':1}, {'a':2, 'b':2}] AS v

results into << <<1, 1>>, <<2, 2>> >>.

6.1.4 Treatment of MISSING in SELECT VALUE

MISSING may behave differently from NULL and differently from scalars. The following itemizes the behavior of MISSING
in a number of cases:

• when constructing tuples Whenever during tuple construction an attribute value evaluates to MISSING, then
the particular attribute/value is omitted from the constructed tuple.

Example 18. The query

SELECT VALUE {'a':v.a, 'b':v.b}
FROM [{'a':1, 'b':1}, {'a':2}]

results into <<{'a':1, 'b':1}, {'a':2}>>.

• when constructing arrays Whenever an array element evaluates to MISSING, the resulting array will contain
a MISSING.

Example 19. The query

SELECT VALUE [v.a, v.b]
FROM [{'a':1, 'b':1}, {'a':2}]

results into <<[1, 1], [2, MISSING]>>.

Upon output serialization the MISSING will convert to the symbol that the serialization has chosen for serializing
MISSING.

• when constructing bags Whenever an element of a bag evaluates to MISSING, the resulting bag will contain
a corresponding MISSING.

Example 20. The query

SELECT VALUE v.b
FROM [{'a':1, 'b':1}, {'a':2}]

results into <<1, MISSING>> because {'a':2}.b evaluated to MISSING.

Example 21. The query

SELECT VALUE <<v.a, v.b>>
FROM [{'a':1, 'b':1}, {'a':2}]

results into << <<1, 1>>, <<2, MISSING>> >>.

6.2 Pivoting a Collection into a Variable-Width Tuple
The PIVOT clause may appear in lieu of SELECT VALUE. The PIVOT clause outputs a tuple; in contrast, a SELECT VALUE
outputs a collection (bag or array). The syntax is
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PIVOT ev AT ea c

where the other clauses, c, are the usual FROM, WHERE, etc. The semantics are similar to SELECT VALUE. Let ρ0 and ρ be
the environments of the SFW query. For each input binding tuple b ∈ Bin

PIVOT, PIVOT outputs an attribute name/value
pair a, v, where the name a is the result of ea and the value v is the result of ev. (Technically, ρ0, (ρ‖b) ` ea 7→ a and
ρ0, (ρ‖b) ` ev 7→ v.) Regardless of whether Bin

PIVOT is a bag (i.e., the SFW query did not have an ORDER BY) or an array
(i.e., the SFW query had an ORDER BY), the output tuple is unordered. Schema may be applied extantly to obtain an
ordered tuple.

Example 22. The query:

PIVOT t.price AT t.symbol
FROM [{'symbol':'tdc', 'price': 31.52}, {'symbol': 'amzn', 'price': 840.05}] AS t

results into the tuple {'tdc':31.52, 'amzn':840.05}.

The treatment of MISSING is same to the treatment of MISSING by SELECT VALUE (Section refsec:tuple-constructor).
Namely, whenever an attribute name or attribute value evaluates to MISSING, the corresponding attribute name/value
pair will not appear in the tuple.

Example 23. The query

PIVOT t.price AT t.symbol
FROM [{'symbol':25, 'price':31.52}, {'symbol':'amzn', 'price':840.05}] AS t

results into the tuple {'amzn': 840.05} since 25 is not a legitimate attribute name.

6.3 SQL SELECT list as Syntactic Sugar of SELECT VALUE

6.3.1 SELECT Without *

The SQL syntax:

SELECT e1 AS a1, . . ., en AS an

is syntactic sugar for:

SELECT VALUE {a′1:e1, . . ., a′n:en}

whereas if the attribute name ai is written as an identifier (e.g., a or "a") it is replaced by a single-quoted form a′i
(e.g., 'a').

When the expression ei is of the form e′i.n (i.e. a path that navigates into tuple attribute n), PartiQL follows SQL
in allowing the attribute name to be optional. In this case,

SELECT . . . ei.n . . .

is equivalent to

SELECT . . . ei.n . . . AS n

In the case that the expression ei is not of the form e′i.n the clause:

SELECT . . . ei ...
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is equivalent to

SELECT . . . ei AS ai . . .

where ai is a system-generated name. SQL and PartiQL do not provide a standard convention.

6.3.2 SQL’s *

Consider a query whose FROM defines a variable x that has no schema and the SELECT clause includes at least one x.*.
Let us first consider the simpler case where the SELECT clause is a single item x.*. Then the clause

SELECT x.*

reduces to

SELECT VALUE CASE WHEN NOT x IS TUPLE THEN {'_1': x} ELSE x END

Notice that PartiQL extends the .* to also operate on x bindings that are not tuples. These are converted to singleton
tuples with a synthetic name.

Example 24. The query

SELECT x.*
FROM [{'a':1, 'b':1}, {'a':2}, 'foo'] AS x

results into << {'a':1, 'b':1}, {'a':2}, {'_1':'foo'} >>. Notice that the input has a non-tuple that was con-
verted to a tuple with a synthetic attribute name _1, this is because the result of a traditional SELECT is always a
container of tuples.

We generalize the semantics of a SELECT list, where at least one of the items is a .* item, we use the function
TUPLEUNION. When all of t1, t2, . . . , tn are tuples TUPLEUNION(t1, t2, . . . , tn) outputs a tuple t such that for each attribute
name/value pair n : v of any ti, the tuple t has a respective n : v. Notice the possibility that the output t has duplicate
attribute names because either (i) two different inputs ti and tj had the same attribute name, or (ii) because an input
ti already had a duplicate attribute name.

Using TUPLEUNION, we rewrite the SELECT clause as illustrated by the following example, which has two .* items
and one conventional item. The generalization to more items, of either kind should be obvious. Notice that if v1 (resp.
v3) is bound to a non-tuple value v, then it is treated as if it were the tuple {’_1’:v1} (resp. {’_2’:v3}.

SELECT v1.*, e2 AS a, v3.*

is equivalent to

SELECT VALUE TUPLEUNION(
CASE WHEN v1 IS TUPLE THEN v1 ELSE {'_1': v1} END,
{'a':e2},
CASE WHEN v3 IS TUPLE THEN v3 ELSE {'_2': v3} END

)

Notice that the attribute names _1, _2 have been invented.
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6.4 Examples with combinations of multiple features
Example 25. A SFW subquery may appear in the SELECT VALUE clause of a query, enabling the creation of nested
results.

Consider the database

sensors : [{’sensor’:1},
{’sensor’:2}
]

logs: [{’sensor’:1, ’co’:0.4},
{’sensor’:1, ’co’:0.2},
{’sensor’:2, ’co’:0.3}
]

The query

SELECT VALUE {’sensor’: s.sensor,
’readings’: (SELECT VALUE l.co

FROM logs AS l
WHERE l.sensor = s.sensor
)

}
FROM sensors AS s

results into

<<{’sensor’:1, ’readings’:<<0.4, 0.2 >>},
{’sensor’:2, ’readings’:<<0.3 >>}

>>

Notice that each tuple of the result has a nested array, which has been created by the inner SELECT VALUE.
The query could also have been written using SELECT (instead of SELECT VALUE) for the outer query, as follows:

SELECT s.sensor AS sensor,
(SELECT VALUE l.co
FROM logs AS l
WHERE l.sensor = s.sensor
) AS readings

FROM sensors AS s

Furthermore, the AS sensor could be ommitted (as in SQL).
Example 26. This example shows how the combined action of UNPIVOT and PIVOT enables to analyze the attribute
names. Consider the following database that has a sequence of measurements of various gases.

sensors : [{’no2’:0.6, ’co’:0.7, ’co2’:0.5},
{’no2’:0.5, ’co’:0.4, ’co2’:1.3}
]

The following query keeps only the carbon oxides. 3

SELECT VALUE (PIVOT v AT g
FROM UNPIVOT r AS v AT g
WHERE g LIKE ’co%’)

FROM sensors AS r

The result is

[{’co’:0.7, ’co2’:0.5},
{’co’:0.4, ’co2’:1.3}
]

Intuitively, the UNPIVOT turns every instance of the tuple t into a collection. The WHERE filters the collections. The
PIVOT pivots the filtered collections back into tuples.

3The query author is pretty weak in chemistry and cannot enumerate the carbon oxides explicitly in her query.
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7 Functions
The semantics of predicates (i.e., functions returning booleans) and (non-aggregate) functions in PartiQL are identical
to those of SQL when their inputs are those that are allowed by SQL. PartiQL makes the following extensions for the
cases where the inputs are beyond those allowed by SQL.

7.1 Inputs with wrong types:
Unlike SQL where typing issues can be detected during query compilation, the permissive option of PartiQL has to
define semantics for the case where the inputs of a function are not compatible with the function/predicate arguments.
Furthermore, PartiQL facilitates propagating missing input attributes to respective missing output attributes.

Alike SQL, all functions have input argument types that they conform to. For example, the function log expects
numbers. All functions return MISSING when they input data whose types do not conform to the input argument
types. Since no function (other than IS MISSING) has MISSING as an input argument type, it follows that all functions
return MISSING when one of their inputs is MISSING.

Example 27. The query

SELECT VALUE {’a’:3*v.a, ’b’:3*(CAST v.b AS INTEGER)}
FROM [{’a’:1, ’b’:’1’}, {’a’:2}] v

results into <<{’a’:3, ’b’:3}, {’a’:6} >>. Notice how the missing b attribute in the input leads to a respective
missing attribute in the output.

Example 28. Each one of these expressions returns MISSING: 5 + missing, 5 > ’a’, NOT {a:1}.

7.1.1 Equality

Equality never fails in the type-checking mode and never returns MISSING in the permissive mode. Instead, it can
compare values of any two types, according to the rules of the PartiQL type system. For example, 5 = ’a’ is false.

Since PartiQL variables may bind to composite values (collections, tuples), PartiQL extends the semantics of
equality for these cases. In particular, equality in PartiQL is deep equality, defined as follows:

1. Given two arrays x and y that have the same length l, the result of x = y is the result of

eqg(x[0], y[0]) AND . . . AND eqg(x[l], y[l])

The eqg, unlike the =, returns true when a NULL is compared to a NULL or a MISSING to a MISSING. When the
arrays x and y do not have the same length, the x = y is false.

2. A similar straightforward equality applies to tuples: They have to have the same attributes. Then equality
t1 = t2 is true if

eqg(t1.a,t2.a1) AND . . . AND eqg(t1.an, t2.an)

where a1, . . . , an are the attributes that appear in t1 and t2.

3. Equality for bags is similarly straightforward: Two bags x and y are equal if and only if every element e of x
that appears n times in x also appears n times in y.

Example 29. The following are true:

<<3, 2, 4, 2 >>= <<2, 2, 3, 4 >>
{’a’:1, ’b’:2} = {’b’:2, ’a’:1}
{’a’:[0,1], ’b’:2} = {’b’:2, ’a’:[0,1]}

The following are false:

<<3, 4, 2 >>= <<2, 2, 3, 4 >>
{’a’:1, ’b’:2} = {’a’:1}
{’a’:[0,1], ’b’:2} = {’b’:2, ’a’:[0,1,2]}
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The following are also false.

{’a’:1, ’b’:2} = {’a’:1}
{’a’:1, ’b’:2} = {’a’:1, ’b’:null}
{’a’:[0,1], ’b’:2} = {’b’:2, ’a’:[null,1]}
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8 WHERE clause
The WHERE clause inputs the bindings that have been produced from the FROM clause and outputs the ones that satisfy
its condition.

The boolean predicates follow SQL’s 3-valued logic. Recall, PartiQL has two kinds of absent values: NULL and
MISSING. As far as the boolean connectives and IS NULL are concerned a NULL input and a MISSING input behave
identically. For example, MISSING AND TRUE is equivalent to NULL AND TRUE: they both result into NULL.

For the semantics of equality and of other functions, see Section 7.
Alike SQL, when the expression of the WHERE clause expression evaluates to an absent value or a value that is not

a Boolean, PartiQL eliminates the corresponding binding.

Example 30. The result of

SELECT VALUES v.a
FROM [{’a’:1, ’b’:true}, {’a’:2, ’b’:null}, {’a’:3}] v
WHERE v.b

is <<1 >>.

The predicate IS MISSING allows distinguishing between NULL and MISSING: NULL IS MISSING results to false;
MISSING IS MISSING results to true.
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9 Coercion of subqueries
In PartiQL, as is the case with SQL as well, expressions may involve SFW subqueries (Figure 3, line 20). PartiQL
SFW subqueries are enclosed in parentheses (i.e., identical to SQL). For compatibility with SQL, a SFW subquery
starting with a SELECT clause (as opposed to a subquery starting with SELECT VALUE or PIVOT) coerces into a scalar or
into an array, depending on the context. The following cases replicate SQL’s coercing behavior and analyze in which
cases the result of a subquery coerces into scalar and in which cases they coerce into arrays.

An PartiQL extension with respect to SQL is that, in the permissive mode, subqueries that fail to coerce to the
required type (scalar or tuple) still run, as opposed to failing. They simply omit from the results the data that
correspond to the coercion failures.

9.1 Coercion of a SELECT subquery into a scalar
In each of the following cases a SFW subquery coerces into a scalar

• if it appears as the rhs of a comparison operator (=, >, etc) where the lhs is not an array literal. And, vice
versa, if it appears as the lhs of a comparison operator where the rhs is not an array literal. (If it is the lhs of a
comparison operator where the lhs is an array literal, it coerces into array, per Section 9.2.)

• if it is an SFW subquery expression that (a) is not the collection expression of a FROM clause item and (b) is not
the rhs of an IN. (If it is the rhs of an IN then it should not be coerced; see note on semantics of IN, Section ??.)

Essentially, a subquery that is coerced may appear in all clauses except the FROM. For example, it may be a SELECT
subquery s that appears as an item of a SELECT, SELECT VALUE or PIVOT clause. Or it may be a subexpression of an
expression that appears in SELECT, SELECT VALUE or PIVOT clause. Or it may be a subexpression of the WHERE clause
expression, as long as it is not the rhs of an IN. In any of these cases the result of the subquery s is cast into a scalar.

Technically, the subquery s (which uses SELECT) is rewritten into an equivalent subquery s′ that utilizes SELECT
VALUE, by following the steps of Section 6.3. Then the result of s′ is cast into a scalar by applying the function
COLL_TO_SCALAR(s′).

Example 31. The SQL query

SELECT v.foo,
(SELECT w.bar
FROM someDataSet w
WHERE w.sth = v.sthelse) AS bar

FROM anotherDataSet v

is rewritten into

SELECT VALUE {’foo’: v.foo
’bar’: COLL_TO_SCALAR(SELECT VALUE {’bar’: w.bar}

FROM someDataSet w
WHERE w.sth = v.sthelse)}

FROM anotherDataSet v

As is the common semantics of PartiQL in the permissive mode, when COLL_TO_SCALAR fails to cast the subquery
into a scalar, it outputs MISSING. The inputs that are coerced into scalars are the ones that SQL prescribes: When
the input is a collection consisting of a single tuple with a single attribute, the input is coerced into a scalar. All other
inputs to COLL_TO_SCALAR lead to MISSING.

Example 32. In this example, in one instance the inner SELECT evaluates to a collection with more than one element.
Because the COLL_TO_SCALAR function produces a MISSING instead of failing, the query works.

Consider the tables

customers : [{’id’:1, ’name’:’Mary’},
{’id’:2, ’name’:’Helen’},
{’id’:1, ’name’:’John’}
]

orders : [{’custId’:1, ’name’:’foo’},
{’custId’:2, ’name’:’bar’}
]

August 1, 2019 Page 33 of 48



— DRAFT — 9.2 Coercion of a SELECT subquery into an array

The following query would fail in SQL, because there are two customer tuples with the same id. Of course, in
a well-designed SQL database that has a primary key or uniqueness constraint on the id, there would not be two
customers with the same id. However, lack of constraints is typical in the data targeted by PartiQL. This query runs
in the permissive mode of PartiQL.

SELECT o.name AS orderName,
(SELECT c.name FROM customers c WHERE c.id=o.custId) AS customerName

FROM orders o

The result is

<< {’orderName’:’foo’}, {’orderName’:’bar’, ’customerName’:’Helen’} >>

Notice the missing ’customerName’ in the first tuple.

As in SQL, an implementation with static type checks will be able to detect and warn that, in certain cases, a
coercion will always fail and produce missing.

Example 33. The following SELECT clause is guaranteed to produce tuples with bar1 and bar2. Thus it cannot
coerce into scalar.

SELECT w.bar1 AS bar1, w.bar2 AS bar2
FROM someDataSet w

Static type analysis can infer that the nested query above will deliver tuples consisting of bar1 and bar2. Thus, even
before accessing any data, it can warn the user that this query is erroneous.

9.2 Coercion of a SELECT subquery into an array
An SELECT SFW subquery coerces into an array when it is the rhs (respectively, lhs) of a comparison operator whose
other argument is an array.

4

The reduction of a SELECT subquery to the PartiQL is exhibited by the following example.

Example 34. The SQL query

SELECT v.foo
FROM anotherDataSet v
WHERE (v.a, v.b) = (SELECT w.c, w,d

FROM someDataSet w
WHERE w.sth = v.sthelse)

is rewritten into

SELECT VALUE {’foo’: v.foo}
FROM anotherDataSet v
WHERE (v.a, v.b) = (SELECT VALUE [w.c, w,d]

FROM someDataSet w
WHERE w.sth = v.sthelse)

4Recall, in the interest of compatibility to SQL, PartiQL allows array literals to be denoted with parentheses instead of brackets (see
Section 6.1.2).
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10 Scoping rules
As far as the variables environment is concerned, the scoping rules are identical to those of SQL. Section 3.4 explained
how the resolution of variable naming conflicts favors the variables defined by the inner queries.

The scoping rules discussed in the present section discuss the resolution of naming conflicts between names defined
in the database environment and the variables of the environment variables. The potential for such naming conflicts
is driven by the nested data of PartiQL, as illustrated next.

Notice there are a few more naming conventions, pertaining to the use of attribute names defined in the SELECT
clause into the GROUP BY and ORDER BY clause. These conventions are explained in along with the semantics of the
respective clauses (see Sections 11 and 12).

Example 35. The following example illustrates how SQL compatibility issues and the needs of navigating into nested
data need to be carefully merged together. Consider the following database that has a table c, i.e. a collection of
tuples, and also named data x.n and y.

t.c: << {’a’:1, ’n’:[{’b’:11, ’c’:12}]},
{’a’:2, ’n’:[{’b’:21, ’c’:22}]}
>>

x.n : << {’b’:3} >>
y: {’a’:1, ’b’:2}

Then consider the query

SELECT t.a
FROM t.c AS x
WHERE x.a IN (SELECT y.b FROM x.n AS y)

This query poses many scoping issues:

1. Does x.n refer to the named value x.n or to the n attribute of the variable x? For SQL compatibility purposes
it refers to the named value x.n. Read below how to refer to the variable x.

2. Does y.b refer to the b attribute of the y attribute or to the b attribute of the named value y? For SQL
compatibility purposes it refers to the b attribute of the variable y.

Notice how SQL compatibility required the database environment to take priority over the variables environment in
the FROM clause and then, vice versa, the variables environment to take priority over the database environment in the
SELECT clause.

Scoping rules resolving naming conflicts between variables and database names: Since the rules are easier
to express when all database names are a single identifier, such as thedb or "the db" (as opposed to paths, such
as somedb.sometable), we first specify the scoping rules under the assumption that all database names are a single
identifier. We remove the assumption and generalize later.

In the absence of schema the following rules apply

1. @identifier refers to the environment variable named identifier ; if there is no such environment variable, the iden-
tifier refers to the database name identifier ; if there is no such database name either, the query fails compilation.

2. in a FROM clause path that starts with identifier, the identifier refers to the database name identifier ; if there is
no such database name, the identifier refers to a variable; otherwise query fails compilation. 5

3. in a non-FROM clause path that starts with identifier, the identifier refers to the environment variable named
identifier ; if there is no such environment variable, the identifier refers to the database name identifier ; if there
is no such database name either, the query fails compilation.

Next, we generalize to also allow for the possibility of database names of the form identifier.indentifier. . . .. The
following rules apply regarding the semantics of i1.i2. . . . .in, where i1, i2, . . . in are identifiers.

• @i1.i2. . . . .in always refers to the environment variable named i1; if there is no such variable and i1.i2. . . . .im,m ≤
n is a database name then i1.i2. . . . .im refers to such named database name. Again, if there is a choice, choose
the largest m. If both the resolution to variable and the resolution to database name, fail the query during
compilation.

5A path is a FROM clause path if it appears in the FROM clause of the SFW query in which it is immediately nested.
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• if i1.i2. . . . .in is a FROM path and i1.i2. . . . .im,m ≤ n is a database name then i1.i2. . . . .im refers to such
named database name and im+1. . . . .in is a series of tuple path navigations starting from the database name
i1.i2. . . . .im. If there is a choice, choose the largest m, i.e., the longest database name.

• if i1.i2. . . . .in is a non-FROM clause expression and i1 is an environment variable then i1 refers to such variable;
if there is no such variable and i1.i2. . . . .im,m ≤ n is a database name then i1.i2. . . . .im refers to such named
database name. Again, if there is a choice, choose the largest m. If both the resolution to variable and the
resolution to database name, fail the query during compilation.

Example 36. Assume database names coll, v.foo, w. Then in the query

1 SELECT v.foo
2 FROM coll AS v, @v.foo AS w,
3 (SELECT w.a, u.b FROM @w.bar AS u)
4 AS x

coll refers to the database name. The v in @v.foo refers to the variable v. If the @ were not there, v.foo would refer
to the database name v.foo. The w in w.a refers to the variable defined in line 2.

Note, the expressions coll and @v.foo are FROM clause expressions because they appear in the FROM clause of
the sfw_query of lines 1-4, in which they are immediately nested. Similarly, the expression @w.bar is a FROM clause
expression because it appears in the FROM clause of the sfw_query of line 3, in which it is immediately nested. In
contrast, the expressions w.a and u.b are not FROM clause expressions. Though they are nested into the FROM clause
of the query of lines 1-4, they are not immediately nested into the query of lines 1-4.

August 1, 2019 Page 36 of 48



— DRAFT —

11 GROUP BY clause
The PartiQL GROUP BY clause expands SQL’s grouping. Unlike SQL, the PartiQL GROUP BY can be thought of as a
standalone operator that inputs a collection of binding tuples and outputs a collection of binding tuples.

As is typical in many clauses, the semantics proceed in two steps:

• Section 11.1 explains the core PartiQL GROUP BY structure.

• Section 11.2 shows that SQL’s GROUP BY can be explained over the core GROUP BY.

11.1 PartiQL GROUP BY core: Grouping into a Group Variable
The GROUP BY clause (Figure 3, lines 9–11)

GROUP BY e1 AS x1 , . . . , em AS xm GROUP AS g

creates a group. Each ei is a grouping expression, each xi is a grouping variable 6 and g is the group variable.
As in SQL, the bag of input binding tuples Bin

GROUP is partitioned into the minimal number of equivalence groups
B1 . . . Bn, such that any two binding tuples b, b′ ∈ Bin

GROUP are in the same equivalence group if and only if every grouping
expression ei evaluates to equivalent values vi (when evaluated on b) and v′i (when evaluated on b′). More precisely, as
in SQL, there is an equivalence function eqg, used by the GROUP BY to determine if two values vi and v′i are equivalent
for grouping purposes. The equivalence function eqg(vi, v

′
i) returns only true or false; true meaning that the values

are equivalent for grouping purposes. See Section 11.1.1 for specifics of eqg. If a grouping expression evaluates to
MISSING, it is first coerced into NULL, thus bringing MISSING and NULL in the same group.

Unlike SQL, for each group Bj (1 ≤ j ≤ n), the GROUP BY clause outputs a binding tuple bj = 〈x1 : v1, . . . , xm :
vm, g : Bj〉 that has the full group Bj . Notice:

1. the binding tuples that appear in the g collection have one attribute for each of the variables defined in the FROM
clause, since these binding tuples come as-is from Bin

GROUP.

2. even if the bag Bin
GROUP is flat binding tuples, the output bag Bout

GROUP is not just flat binding tuples, since g has
nested binding tuples. Note, we have been explicitly denoting binding attributes with MISSING values in the
binding tuples. However, once these binding tuples become the tuples of the PartiQL data model, any binding
attribute with MISSING value will not appear.

Example 37. Consider again the logs data of Example 25 and assume that we want to group the co readings by
sensor. The following query solves the problem using only core features.

SELECT VALUE {’sensor’: sensor,
’readings’: (SELECT VALUE v.l.co FROM g AS v) }

FROM logs AS l
GROUP BY l.sensor AS sensor GROUP AS g

The GROUP BY outputs the collection of binding tuples

Bout
GROUP = Bin

SELECT =<<〈 sensor:1, g: <<〈l:{’sensor’:1, ’co’:0.4}〉,
〈l:{’sensor’:1, ’co’:0.2}〉
>>〉,

〈 sensor:2, g:<<〈l:{’sensor’:2, ’co’:0.3}〉 >>〉
>>

Notice that the collection g has tuples with a single attribute l, since this is the single variable of the FROM clause
in this example.

Consequently the SELECT clause outputs

<<{’sensor’:1, ’readings’:<<0.4, 0.2>>},
{’sensor’:2, ’readings’:<<0.3 >>}

>>

6Grouping variables is an extension of SQL by PartiQL, which interestingly simplifies dramatically the explanation of SQL semantics,
as it enables the GROUP BY to be seen as a standalone function.
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Notice that the query of Example 25 and the query of the present example do not always produce the same result. For
example, if there were no readings for a sensor, the query of Example 25 would still have this sensor in the result (and
its readings would be empty). In contrast, the query of the present example will not have this sensor in the result.

Here is a shorter equivalent query that uses PartiQL collection paths and SQL’s aliases.

SELECT VALUE {’sensor’: sensor,
’readings’: g[*].l.co }

FROM logs AS l
GROUP BY l.sensor AS sensor GROUP AS g

Notice, the output binding tuple provides the partitioned input binding tuples in the group variable g, which can
be explicitly utilized in subsequent HAVING, ORDER BY and SELECT clauses. Thus, an PartiQL query can perform
complex computations on the groups, leading to results of any type (e.g. collections nested within collections). The
explicit presence of groups in PartiQL, while more general than SQL, also leads to simpler semantics than those of
SQL, since the GROUP BY clause semantics are independent of the presence of subsequent functions in HAVING, ORDER
BY and SELECT.

Example 38. The following PartiQL query counts and averages the readings of each sensor. It also refers to the logs
of Example 25. The COLL_COUNT function is simply given the group variable and counts how many elements are in
that collection.

SELECT VALUE {’sensor’: sensor,
’avg’: COLL_AVG(SELECT VALUE v.l.co FROM g AS v),
’count’: COLL_COUNT(g) }

FROM logs AS l
GROUP BY l.sensor AS sensor GROUP AS g

Notice, the aggregate functions COLL_AVG and COLL_COUNT (and for that matter, by convention, any function
starting with COLL) can be thought of as general-purpose functions. Generally, they do not have to be fed by the
result of a grouping operation - unlike SQL’s COUNT and AVG that are being fed exclusively from the results of grouping
operations. (Furthermore, the SQL COUNT and AVG make use of SQL’s syntactic sugar, where there is no explicit use
of group variable, as explained in Section 11.2.2.)

Example 39. This is a legitimate PartiQL expression:

COLL_COUNT([5, {a:2, b:3}])

The result is 2, since the input to COLL_COUNT is an array with two elements.

Similarly, it is fine to include in any clause an aggregate function fed by the result of a (sub)query.

Example 40. In the following expression COLL_COUNT inputs the result of a query

COLL_COUNT(SELECT VALUE x FROM logs x WHERE x.sensor=1)

Remark: An efficient implementation will often avoid materializing the group variable. In many cases, like the ones
of the above examples, the group can be streamed into the aggregate function.
Remark: The semantics of the SELECT and HAVING clauses do not need to be aware of the presence of GROUP BY and
treat differently (as SQL would do) these classes of functions:

• scalar functions (e.g. +) that input scalars and output scalars

• SQL aggregation functions (e.g. SUM) that input bags and output scalars

Indeed, HAVING behaves identical to a WHERE, once groups are already formulated earlier.
The PartiQL approach provides two benefits: First, it leads to shorter, modular semantics. Second, it enables

GROUPY to address use cases that would otherwise need knowledge and non-trivial SQL programming of window
functions. See Example 47.
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11.1.1 Equivalence function used by grouping; grouping of NULL and MISSING

The equivalence function eqg extends SQL’s respective function. In particular, it behaves as follows:

• eqg(NULL, NULL) is true, despite NULL = NULL not being true.

• for any two non-null values x and y, eqg(x, y) returns the same with x = y. As is the case generally for =, while
SQL’s = will error when given incompatible types, while the PartiQL = will return false.

Notice that PartiQL will group together the NULL and the MISSING grouping expressions, since any grouping
expression resulting to MISSING has been coerced into NULL before eqg does comparisons for grouping. Example 41
shows the repercussions of coercing NULL into MISSING and also shows how to discriminate between NULL and MISSING,
if so desired.

Example 41. The query of Example 37 will group together any log readings where the sensor attribute is either
NULL or is altogether MISSING. For example, if logs is

logs:[ {’sensor’: 1, ’co’:0.4},
{’sensor’: 2, ’co’:0.3},
{’sensor’: null, ’co’:0.1},
{’sensor’: 1, ’co’:0.2},
{’co’:0.5}

]

then the GROUP BY will output the collection of binding tuples

Bout
GROUP = Bin

SELECT =<<〈 sensor:1, g: <<〈l:{’sensor’:1, ’co’:0.4}〉,
〈l:{’sensor’:1, ’co’:0.2}〉
>>〉,

〈 sensor:2, g:<<〈l:{’sensor’:2, ’co’:0.3}〉 >>〉,
〈 sensor:null, g: <<〈l:{’sensor’:null, ’co’:0.1}〉,

〈l:{’co’:0.5}〉
>>〉

>>

Notice that both the 3rd and 5th tuples of logs were grouped under the sensor:null group, despite the sensor of
the 3rd being NULL while the sensor of the 5th being MISSING. The query result is

<<{’sensor’:1, ’readings’:<<0.4, 0.2>>},
{’sensor’:2, ’readings’:<<0.3>>},
{’sensor’:null, ’readings’:<<0.1, 0.5>>}

>>

If we wanted to discriminate the NULL from the MISSING we could write the following query

SELECT VALUE {’sensor’: CASE WHEN missingFlag THEN MISSING ELSE sensor END,
’readings’: (SELECT VALUE v.l.co FROM g AS v) }

FROM logs AS l
GROUP BY l.sensor IS MISSING AS missingFlag, l.sensor AS sensor GROUP AS g

In this case the GROUP BY would output the collection of binding tuples

Bout
GROUP = Bin

SELECT =<<〈missingFlag:false,
sensor:1, g: <<〈l:{’sensor’:1, ’co’:0.4}〉,

〈l:{’sensor’:1, ’co’:0.2}〉
>>〉,
〈 missingFlag: false, sensor:2, g:<<〈l:{’sensor’:2, ’co’:0.3}〉 >>〉
〈 missingFlag: false, sensor:null, g:<<〈l:{’sensor’:null, ’co’:0.1}〉 >>〉
〈 missingFlag: true, sensor:null, g:<<〈l:{’co’:0.5}〉 >>〉

>>

and the query result would be
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<<{’sensor’:1, ’readings’:<<0.4, 0.2>>},
{’sensor’:2, ’readings’:<<0.3>>},
{’sensor’:null, ’readings’:<<0.1>>},
{’readings’:<<0.5>>}

>>

11.1.2 The GROUP ALL variant

The GROUP ALL variant of GROUP BY outputs a single binding tuple, regardless of whether the FROM/WHERE produced
any tuples, i.e., regardless of whether its input Bin

GROUP is empty or not.
The GROUP ALL is not increasing the expressiveness of PartiQL. Example 42 shows how to achieve without GROUP

ALL, what the GROUP ALL can do. However, we include GROUP ALL for facilitating the reduction of SQL’s aggregation
into the core PartiQL (see Section 11.2.2).
Example 42. Consider again the logs data of Example 25 and assume that we want to count the total number of
readings that are above 1.5 with a core PartiQL query. (Example 45 does the same with SQL.)
SELECT VALUE {’largeco’: COLL_COUNT(g)}
FROM logs AS l
WHERE l.co > 1.5
GROUP ALL AS g

Notice, there are no readings above 1.5 in the example data. Since there is no tuple that satisfies the WHERE clause

Bout
WHERE = Bin

GROUP =<< >>
Bout

GROUP = Bin
SELECT =<< 〈g :<< >>〉 >>

Since COLL_COUNT( << >> ) is 0, the query result is the collection

<< {’largeco’: 0 } >>

Therefore the PartiQL query is equivalent to the plain SQL query
SELECT COUNT(*) AS largeco
FROM logs AS l
WHERE l.co > 1.5

The following core PartiQL also accomplishes the same computation, without using GROUP ALL.
{’largeco’: COLL_COUNT(SELECT VALUE l

FROM logs AS l
WHERE l.co > 1.5
)

}

11.2 SQL compatibility features
The group-by and aggregation of PartiQL is backwards compatible to SQL.

11.2.1 Grouping Attributes and Direct Use of Grouping Expressions

For SQL compatibility PartiQL allows

GROUP BY . . . ,e, . . .

i.e., a grouping expression e that is not associated with a grouping variable x. (In core PartiQL, one would write
e AS x.)

For SQL compatibility, PartiQL supports using the grouping expression e in HAVING, ORDER BY and SELECT clauses.
The SQL form (S) is syntactic sugar for the core PartiQL (C).

(S) FROM . . . (C) FROM . . .
GROUP BY e, . . . GROUP BY e AS x, . . .
HAVING f(e, . . .) HAVING f(x, . . .)
ORDER BY f ′(e), . . . ORDER BY f ′(x), . . .
SELECT f ′′(e), . . . SELECT f ′′(x), . . .
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Example 43. The SQL-compatible query

SELECT v.a+1 AS bar
FROM foo AS v
GROUP BY v.a+1

is written in core PartiQL as

SELECT VALUE {’bar’: x}
FROM foo AS v
GROUP BY v.a+1 AS x GROUP AS dontcare

Remark: What is “same expression"?: An open question in the equivalence of (C) and (S) is the exact meaning
of “same expression e in GROUP BY and SELECT (or HAVING, ORDER BY)". Is v.a + 1 the same with 1 + v.a? Is v.a
+ 1 the same with a + 1 in the presence of a schema that dictates that the variable v is a tuple with an attribute a?
Both SQL and PartiQL answer “no" and “yes" respectively to the two questions. In particular:

An expression e that appears in the GROUP BY clause and an expression e′ that appears in the SELECT or HAVING
or ORDER BY are considered the same expression if they are syntactically identical after performing the schema-based
rewritings of Section 15.

11.2.2 SQL’s Implicit Use of the Group Variable in SQL Aggregate Functions

SQL does not have explicit group variables. For SQL compatibility, PartiQL allows the SQL aggregation functions to
be fed by expressions that do not explicitly say that there is iteration over the group variable. Suppose that a query

1. is a SELECT query,

2. lacks a GROUP AS clause, and

3. any of the SELECT, HAVING and/or ORDER BY clauses contains a function call f(e), where f is a SQL aggregation
function such as SUM and AVG. (See Section 11.2.3

Then, the query is rewritten as follows:

• if the query has a GROUP BY clause, add to it

GROUP AS g

where g is a fresh variable, i.e., a variable that is not a database name nor a variable of the query or a variable
of the queries within which it is nested.

• if the query has no GROUP BY clause, add to it

GROUP ALL GROUP AS g

where g is a fresh variable.

• if the aggregation function call is COUNT(*), then rewrite into COUNT(g)

• otherwise, rewrite f(e) into

f(SELECT VALUE e′ FROM g AS p)

where e′ is produced from e as follows: Consider the variables v1, . . . , vn that appear in Bin
GROUP (i.e., the variables

defined by the query’s FROM and LET clauses) and are not grouping attributes. Substitute each identifier vi (that
does not stand for attribute name) in e with p.vi.

Example 44. Consider again the query of Example 38. It can be written in an SQL compatible way as

SELECT l.sensor AS sensor,
AVG(l.co) AS avg,
COUNT(*) AS count

FROM logs AS l
GROUP BY l.sensor
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Example 45. The query of Example 42 can be written in standard SQL syntax as

SELECT COUNT(g) AS largeco
FROM logs AS l
WHERE l.co > 1.5

Notice that SQL does not allow nested aggregate functions. Respectively, PartiQL does not allow one to write
queries that lack a GROUP AS or GROUP ALL clause and have nested aggregate SQL functions.

11.2.3 Designation of SQL aggregate functions

Each implementation will have a list of SQL aggregate functions, which are not necessarily just the ones prescribed by
the standard (COUNT, SUM, AVG, etc). (Recall from Section 11.2.2 that SQL aggregate functions do not use an explicit
group variable.)

Furthermore, it is required that for each SQL aggregate function f , if an implementation offers a corresponding
core PartiQL aggregate function, the PartiQL function is named COLL_f . For example, the core PartiQL aggregate
COLL_AVG corresponds to the SQL aggregate AVG. Nevertheless, it is possible that an implementation offers only
COLL_AVG or offers only AVG. The semantic relationship between the SQL aggregate function and the corresponding
core PartiQL aggregate function is the one explained in Section 11.2.2: The SQL aggregate functions do not input
explicit group variables and, thus, their semantics are explained by the reduction to the corresponding core PartiQL
aggregate.

11.2.4 Aliases from SELECT clause

In SQL, a grouping expression may be an alias that is defined by the SELECT clause. For compatibility purposes,
PartiQL adopts the same behavior.

The query (S), which uses the SELECT-defined alias feature, is syntactic sugar for the query (C). Notice that the
grouping expression a is simply a shorthand for e.

(S) SELECT . . . ,e AS a, . . . (C) SELECT . . . ,e AS a, . . .
FROM . . . FROM . . .
GROUP BY . . . ,a, . . . GROUP BY . . . ,e, . . .

In the case that the grouping expression is a constant positive integer literal n, then it stands for the nth attribute
of the SELECT clause. However, this requires that the tuples produced by the SELECT have schema and they are ordered
tuples. The relevant examples will be provided in the schema section.

Example 46. Consider the database

people: <<{’name’: ’zoe’, ’age’: 10, ’tag’: ’child’},
{’name’: ’zoe’, ’age’: 20, ’tag’: ’adult’},
{’name’: ’bill’, ’age’: 30, ’tag’: ’adult’}
>>

The query

SELECT p.tag || ’:’ || p.name AS tagname, AVG(p.age) AS average
FROM people AS p
GROUP BY tagname

is equivalent to the query

SELECT p.tag || ’:’ || p.name AS tagname, AVG(p.age) AS average
FROM people AS p
GROUP BY p.tag || ’:’ || p.name

Either query results into

people: <<{’tagname’: ’child:zoe’, ’average’: 10},
{’tagname’: ’adult:zoe’, ’average’: 20},
{’tagname’: ’adult:bill’, ’average’: 30}
>>

August 1, 2019 Page 42 of 48



— DRAFT — 11.3 Windowing cases simplified by the PartiQL grouping

11.3 Windowing cases simplified by the PartiQL grouping
Example 47. Consider again a collection of sensor readings, this time with a timestamp.

logs: [{’sensor’:1, ’co’:0.4, ’timestamp’:04:05:06},
{’sensor’:1, ’co’:0.2, ’timestamp’:04:05:07},
{’sensor’:1, ’co’:0.5, ’timestamp’:04:05:10},
{’sensor’:2, ’co’:0.3}
]

We look for the “jump" readings that are more than 2x the previous reading at the same sensor. The following
query solves the problem using GROUP BY.

SELECT sensor AS sensor,
(WITH orderedReadings

AS (SELECT v FROM oneSensorsReadings v ORDER BY v.timestamp)
SELECT r.co, r.timestamp
FROM orderedReadings r AT p
WHERE r.co > 2*orderedReadings[p-1].co
ORDER BY p
) AS jumpReadings

FROM logs l
GROUP BY l.sensor AS sensor GROUP AS oneSensorsReadings

The result is

<<{’sensor’:1, ’jumpReadings’:[{’co’:0.4, ’timestamp’:04:05:06}]},
{’sensor’:2, ’jumpReadings’:[]}
>>
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12 ORDER BY clause
SQL’s ORDER BY orders the output data. Similarly, the PartiQL ORDER BY is responsible for turning its input bag into
an array. In the following aspects, PartiQL extends the SQL semantics to resolve issues that are not relevant in SQL
but emerge when working on Ion data.

1. SQL’s ORDER BY clause orders its input using an expanded version of the less-than function, which we call the
order-by less-than and denote by <o. The PartiQL <o semantics (Section 12.2) also specify an order among
values of heterogeneous types, including complex values.

2. The interaction of ORDER BY with a UNION (or any other set operator) of SFW queries requires attention since,
unlike SQL, in PartiQL there are no binding tuples (or any tuples at all for that matter) after a SELECT VALUE
clause. Section 12.3 elaborates on this aspect of PartiQL.

3. Unlike SQL, the input of an PartiQL query may also have order, because it is an array. The user may want
to preserve the order of the input into the output. In this case, the AT structure in the FROM clause (recall,
Section 5.1) can capture the input order and the ORDER BY can recreate it. However, this order preservation
mechanism is tedious for the user. Thus, ORDER BY also offers an order preservation directive (Section ??).

Sections 12.4 and 12.5 discuss SQL compatibility issues.

12.1 PartiQL ORDER BY Syntax
Similar to SQL, the PartiQL ORDER BY clause syntax is:

ORDER BY ( e1 [ASC|DESC]? [NULLS FIRST|NULLS LAST]?
...
em [ASC|DESC]? [NULLS FIRST|NULLS LAST]?
)
|PRESERVE

(Figure 3), where e1 . . . em is a list of ordering expressions. In PartiQL a SFW query with ORDER BY outputs an array,
whereas a SFW query without ORDER BY outputs a bag.

Alike SQL’s ORDER BY clause, the NULLS FIRST and NULLS LAST keywords indicate whether NULL and MISSING
values are ordered before or after all other values. Notice that in PartiQL, the NULLS FIRST and NULLS LAST refer to
both NULL and MISSING.

12.2 The PartiQL order-by less-than function
The ORDER BY clause sorts its input using the order-by less-than function <o, which is able to compare values of
different types (unlike SQL). In particular:

1. NULL and MISSING are always first or last and compare equally according to <o. In other words, <o cannot
distinguish between NULL and MISSING.

2. The boolean values are coming first among the non-absent values (i.e., b <o x is always true if b is boolean and
x is not a NULL or a MISSING or a boolean). false comes before true.

3. The numbers come next. The comparisons between number values do not depend on precision or specific type.
Given two numbers x and y, the PartiQL x <o y behaves identical to the SQL order-by less-than function.
Namely, if x and y are not the special values ‘-inf’, ‘inf’ or ‘nan’, then x <o y is the same with x<y. The
special value ‘nan’ comes before ‘-inf’, which comes before all normal numeric values, which are followed by
‘+inf’.

4. Timestamp values follow and are compared by the absolute point of time irrespective of precision or local UTC
offset.

5. The text types come next ordered by their lexicographical ordering by Unicode scalar irrespective of their specific
type.

6. The LOB types follow and are ordered by their lexicographical ordering by octet.
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7. Arrays come next, and their values compare lexicographically based on the comparison of their elements, recur-
sively. Notice that given an array [e1, . . . , em] and a longer array [e1, . . . , em, em+1, . . . , en] that has the same
first m values, the former array comes first.

8. Tuple values follow and compare lexicographically based on the sorted attributes (as defined recursively), first
by the attribute name, and secondly by the attribute values themselves.

9. Bag values come last (except, of course, when NULLS LAST is specified) and their values compare by first reducing
them to arrays by sorting their elements and then comparing the resulting arrays.

12.3 Dependency of ORDER BY semantics on the Presence of Set Operators
Coming up...

12.4 SQL Compatibility ORDER BY clauses
For SQL-compatibility, PartiQL allows the CURRENT variable to be omitted from ordering expressions. Then when the
CURRENT variable binds tuples, the ordering expressions can refer directly to the attributes of those tuples.

The complete scoping rules are as follows. When all of the following conditions are satisfied:

1. an PartiQL path expression ordering expression as appears in the ORDER BY of a UNION ... ORDER BY query,
where a is an identifier and s is the potentially empty suffix of the path.

2. the expression as is evaluated in database environment ρ0 and variables’ environment ρ, which defines variables
v1, . . . , vn and none of them is named a.

3. none of the variables v1, . . . , vn may bind to a tuple that has an attribute a.

then the path expression as resolves to CURRENT.as.
The most common and useful way to have the 3rd condition be satisfied is when the UNION ... ORDER BY is a

top-level query and, thus, the variables environment ρ is empty.

12.5 Use of SELECT variables in ORDER BY for SQL compatibility
Recall from Section 3 that ORDER BY is evaluated before SELECT. For SQL-compatibility, given SELECT ei AS ai, Par-
tiQL also supports the syntactic sugar of using ai in lieu of ei in the ORDER BY clause. Therefore, both SFW queries
below are equivalent:
(1) SELECT ei AS ai (2) SELECT ei AS ai

FROM . . . FROM . . .
ORDER BY ai ORDER BY ei

12.6 Coercion of literals for SQL compatibility
Notice that definition of < dismissed the SQL coercions. In SQL, given explicit literals in a query, coercions may
happen.

Example 48. The query

SELECT * FROM foo WHERE 9 < '10'

is equivalent to

SELECT * FROM foo WHERE 9 < 10

because an automatic coercion of string to number will be introduced.

This aspect of SQL compatibility is introduced by rewriting. Namely, given a query with incompatible types
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13 UNION / INTERSECT / EXCEPT clauses
Coming up...
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14 PIVOT Clause Semantics
The PIVOT clause inputs a bag of binding tuples or an array of binding tuples. Semantically, it is similar to SELECT
VALUE but whereas the latter creates a collection of values, PIVOT constructs a tuple where the each input binding is
evaluated to an attribute value pair in the tuple.

The clause:

PIVOT v AT a

inputs a bag or an array of binding tuples and outputs a single tuple where each evaluation of v and a generate an
attribute in the tuple.

Example 49. This example illustrates a PIVOT that creates a tuple from a collection of tuples.

PIVOT x.v AT x.a
FROM << {'a': 'first', 'v': 'john'}, {'a': 'last', 'v': 'doe'} >>

The result is {'first':'john', 'last':'doe'}.

The expression a is expected to evaluate into a string value. In strict mode, it is an error if this evaluates to a
non-string value. In permissive mode, the attribute is considered MISSING and does not appear in the output. The
expression v can be any PartiQL value, but if it is MISSING it will not be generated in the resulting tuple.
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15 Structural Types and Type-related Query Syntax and Semantics
(WIP)

The input data generally conform to a structural type, also often called schema. The SQL semantics make extensive
use of the structural types in order to assign meaning to queries, which would not have a meaning in the absence of
such structural types.

In the interest of SQL compatibility and user convenience, PartiQL also allows structural types to assign meaning
to queries that would not have a meaning otherwise.

We will soon specify the precise rules that provide SQL compatibility, while keeping the schema optional and the
query results stable with respect to schema addition.
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